PLANNED SYLLABUS COVERAGE (Theory) Government Polytechnic Bilaspur at Kalol

GP Bilaspur SYLLABUS COVERAGE		Department: Electrical Engineering Subject :EM-II				
		Course : DiplomaDuration: 3 Yrs.Total Period: 56Theory : 56				
1	1-8	Rotating Machine: Basic Concepts	 1.1 Principle of Energy conversion 1.2 Rotating Electrical Machine: definition electrical machine, generator & motor 1.3 Physical concept of torque production electromagnetic torque, reluctance torce and concept of torque angle. 	ion [,]	Recommende	
2	9-20	DC Machines	 2.1 Constructional features of DC Machi 2.2Type of windings in DC machine: fie and armature windings 2.3 Armature windings: lap & wave windir armature winding terminologies (conduct turn, coil, coil group, pole pitch, coil spatull-pitched coil, shortpitched coil, back front-pitch) 2.4 Function of the Commutator in Motoriand Generating action 2.5 Armature Reaction in DC machine 2.6 Commutation, cause of sparkin method to improve commutation 2.7 Power flow diagram of DC Machines 	eld ng, or, an, & ng		
3	21-34		 3.1 Working principle of DC generator 3.2 Induced EMF equation & factor determining the EMF of generator 3.3 Electromagnetic torque equation factors determining the torque 3.4 Relationship between generated EM and generator terminal voltage 3.5 Types of DC generator: separatel excited, shunt wound, series wound an compound (differential or cumulative type generator 3.6 Necessary conditions to build up induce EMF in a DC shunt generator. 3.7 Operating characteristics of separatel excited, Shunt, Series and Compound DC generator 3.8 Losses in DC Generator, Efficiency of DC Generator 	& IF Iy Id e) d	· .	

Southing

PLANNED SYLLABUS COVERAGE (Theory) Government Polytechnic Bilaspur at Kalol

GP Bilaspur SYLLABUS COVERAGE		Department: Electrical Engineering Subject :EM-II				
		Course : DiplomaDuration: 3 Yrs.Total Period: 56Theory : 56				
1	1-8	Rotating Machine: Basic Concepts	 1.1 Principle of Energy conversion 1.2 Rotating Electrical Machine: definition of electrical machine, generator & motor 1.3 Physical concept of torque production electromagnetic torque, reluctance torque and concept of torque angle. 		Recommende	
2	9-20	DC Machines	 2.1 Constructional features of DC Machine 2.2Type of windings in DC machine: field and armature windings 2.3 Armature windings: lap & wave winding armature winding terminologies (conductor turn, coil, coil group, pole pitch, coil span full-pitched coil, shortpitched coil, back & front-pitch) 2.4 Function of the Commutator in Motoring and Generating action 2.5 Armature Reaction in DC machine 2.6 Commutation, cause of sparking method to improve commutation 2.7 Power flow diagram of DC Machines 			
3	21-34	DC Generator	 3.1 Working principle of DC generator 3.2 Induced EMF equation & factors determining the EMF of generator 3.3 Electromagnetic torque equation & factors determining the torque 3.4 Relationship between generated EMF and generator terminal voltage 3.5 Types of DC generator: separately excited, shunt wound, series wound and compound (differential or cumulative type) generator 3.6 Necessary conditions to build up induced EMF in a DC shunt generator. 3.7 Operating characteristics of separately excited, Shunt, Series and Compound DC generator 3.8 Losses in DC Generator, Efficiency of DC Generator 			

Summer

5.	Apr ns Ma ce	olicatio EN and To intenan Ci of DC ba achine D c s t f	Working principle of DC motor 4.2 Back AF equation and its significance 4.3 orque equation of DC motor 4.4 Equivalent reuit diagram 4.5 Relationship between ack EMF and terminal voltage 4.6 Types of C motors: Series motor, Shunt motor and ompound motor (differential and umulative) 4.7 Need of Starter, 3-point Starter, 4-point Starter 4.8 Speed control of DC series and shunt motors: Armature & Field control methods and Ward Leonard method. 4.9 Operating characteristics of DC motors: Shunt, Series and Compound motors. 4.10 Effect of armature resistance on Torque-speed curve, 4.11 Losses in DC motor, Efficiency of DC motor: Direct method (direct mechanical loading method), Indirect method (Swinburne's method) and regenerative method (Hopkison's method) 5.1 DC generator applications 5.2 DC motor applications 5.3 DC Machines (motor & generator) testing and maintenance.	
	nellet		roved	HODISION DISO